From Natural Language to RDF Graphs with Pregroups

Antonin Delpeuch[†], Anne Preller^{*}

April 27, 2014

Outline

- 1 Pregroup grammars and compact closed categories
- 2 Compositional semantics

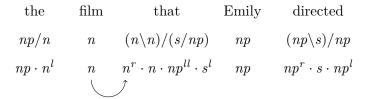
3 Intensional model in the RDF fragment

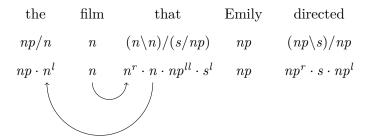
Outline

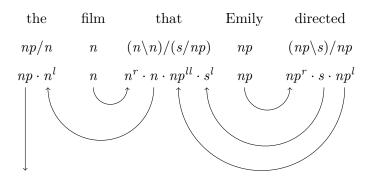
- 1 Pregroup grammars and compact closed categories
- 2 Compositional semantics

3 Intensional model in the RDF fragment

the	$_{\mathrm{film}}$	that	Emily	directed
np/n	n	$(n\backslash n)/(s/np)$	np	$(np\backslash s)/np$
$np\cdot n^l$	n	$n^r \cdot n \cdot np^{ll} \cdot s^l$	np	$np^r \cdot s \cdot np^l$







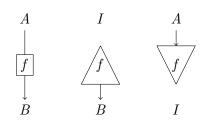
Compact closed categories

- Objects (= types)
 - are closed under $_ \otimes _$ (product of types), $_^l$ and $_^r$ (adjoints).
 - contain basic types, and I, neutral for \otimes .
- Arrows (= type reductions) between two objects
 - can be composed with ∘ (sequential composition) and ⊗ (parallel composition);
 - contain $1_A:A\to A$ (identity of A) and

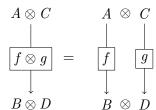
$$\epsilon^l:A^l\otimes A\to I$$
 $\epsilon^r:A\otimes A^r\to I$ $\eta^l:I\to A\otimes A^l$ $\eta^r:I\to A^r\otimes A$

and such that some equations hold.

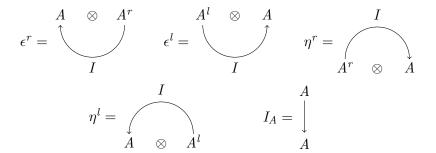
Representation



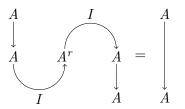
$$\begin{array}{ccc}
A & & A \\
 & & g \\
\hline
f \circ g & & B \\
\downarrow & & f \\
C & & C
\end{array}$$

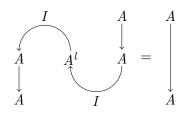


ϵ and η



Some equalities



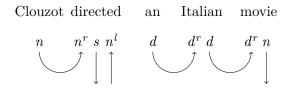


$$\begin{array}{c|c}
f \\
\hline
g \\
\downarrow
g$$

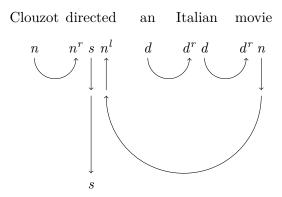
Pregroup reductions as arrows

Clouzot directed an Italian movie $n \quad n^r \ s \ n^l \quad d \quad d^r \ d \quad d^r \ n$

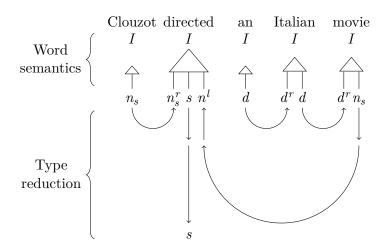
Pregroup reductions as arrows



Pregroup reductions as arrows



Compositional semantics



Motto: Type reduction • Word meanings = Sentence meaning

Outline

- 1 Pregroup grammars and compact closed categories
- 2 Compositional semantics

3 Intensional model in the RDF fragment

Distributional semantics

Category: Finite dimensional Hilbert spaces and linear maps

Coecke, Sadrzadeh, and Clark (2010) Grefenstette and Sadrzadeh (2011)

Montagovian semantics

Category: Finite dimensional modules over $\{0,1\}$ and linear maps

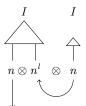
$$\begin{array}{ccc}
I & & & \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}
\end{array}$$

Preller and Sadrzadeh (2011)

Details

n: vector space with an infinite basis B. Each object corresponds to a $b \in B$.

Italian movies

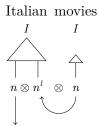


Details

n: vector space with an infinite basis B. Each object corresponds to a $b \in B$.

movies :
$$I \to n$$

movies = $\sum_{x} \delta_{x \text{ is a movie}} x$



Details

n: vector space with an infinite basis B. Each object corresponds to a $b \in B$.

movies :
$$I \to n$$

movies = $\sum_{x} \delta_{x \text{ is a movie}} x$

$$f: n \to n$$

 $f(e) = \delta_{e \text{ is Italian}} e$

$$f(\text{movies}) = \sum_{x} \delta_{x \text{ is a movie}} \delta_{x \text{ is Italian}} x$$

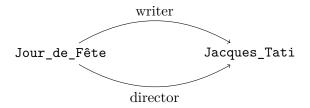
Italian movies I I

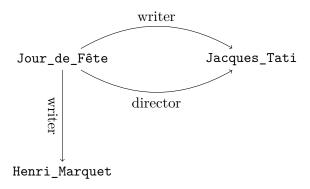
Outline

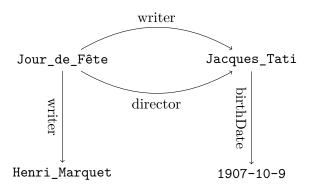
- 1 Pregroup grammars and compact closed categories
- 2 Compositional semantics

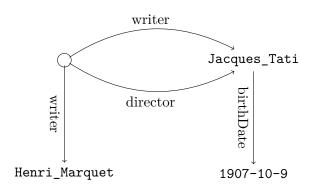
3 Intensional model in the RDF fragment

 ${\tt Jour_de_F\^{e}te} \xrightarrow{\tt director} {\tt Jacques_Tati}$





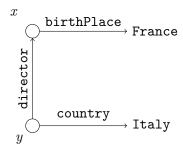




Representation

A French director made a movie in Italy.

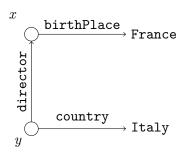
 $\exists x \exists y, \ \operatorname{French}(x) \land \operatorname{directed}(x, y) \land \operatorname{in}(x, \operatorname{Italy})$



Representation

A French director made a movie in Italy.

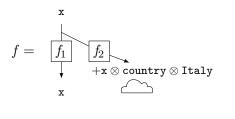
 $\exists x \exists y, \ \operatorname{French}(x) \land \operatorname{directed}(x,y) \land \operatorname{in}(x,\operatorname{Italy})$



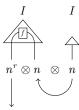
 $x \otimes birthPlace \otimes France + y \otimes director \otimes x + y \otimes country \otimes Italy$

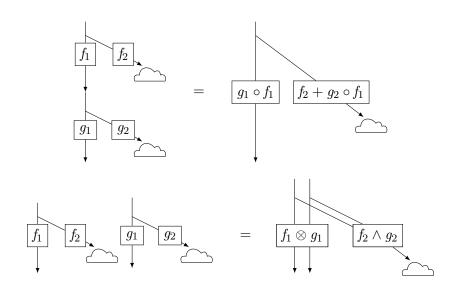
Side effects

Idea: enable arrows to add triples to a global graph in a *side effect* fashion.



Italian movies





where $f_2 \wedge g_2 : e_i \otimes e_j \mapsto f_2(e_i) + g_2(e_j)$

Exchange law

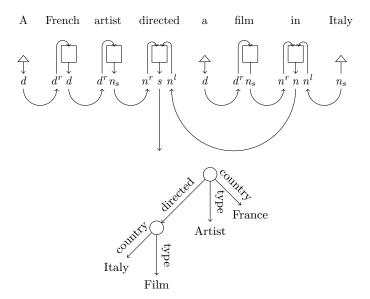
Lemma

This category is monoidal.

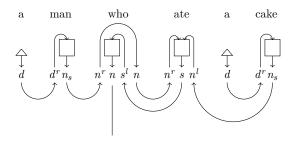
In other words, we have the following equality:

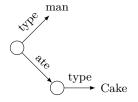
$$\begin{pmatrix}
f_2 & \otimes & g_2 \\
f_1 & \otimes & g_1
\end{pmatrix} = \begin{pmatrix}
f_2 \\
f_1
\end{pmatrix} \otimes \begin{pmatrix}
g_2 \\
f_1
\end{pmatrix}$$

Example 1: adjectives and verbs

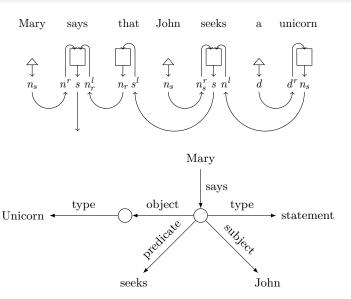


Example 2: who



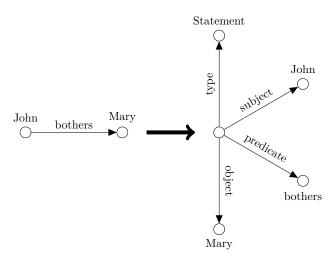


Example 3: reification



RDF reification

Reify: transform a triple into a node.



Thanks

Thanks to the TEXTE group at LIRMM, Alain Lecomte, David Naccache, Antoine Amarilli and Hugo Vanneuville.

And thank you for your attention!

Construction

The category C[S] has:

- objects A where A is an object in \mathcal{C}
- morphisms $(f,g): A \to B$ where $f \in \mathcal{C}(A,B)$ and $g \in \mathcal{C}(A,S)$.
- a law \otimes on objects as in \mathcal{C}
- a law \otimes on arrows defined by $(f,g)\otimes(h,k)=(f\otimes h,g\wedge k)$, where $g\wedge k:u\otimes v\mapsto g(u)+k(v)$
- a law \circ defined by $(f, g) \circ (h, k) = (f \circ h, g \circ h + k)$.
- arrows $1_A = (1_A, 0)$, $\epsilon_A^l = (\epsilon_A^l, 0)$, and similarly for ϵ^r , η^l and η^r .

Yanked meaning

